Extensions 1→N→G→Q→1 with N=C5xQ16 and Q=C22

Direct product G=NxQ with N=C5xQ16 and Q=C22
dρLabelID
Q16xC2xC10320Q16xC2xC10320,1573

Semidirect products G=N:Q with N=C5xQ16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5xQ16):1C22 = D5xC8.C22φ: C22/C1C22 ⊆ Out C5xQ16808-(C5xQ16):1C2^2320,1448
(C5xQ16):2C22 = D40:C22φ: C22/C1C22 ⊆ Out C5xQ16808+(C5xQ16):2C2^2320,1449
(C5xQ16):3C22 = C40.C23φ: C22/C1C22 ⊆ Out C5xQ16808+(C5xQ16):3C2^2320,1450
(C5xQ16):4C22 = D5xSD32φ: C22/C1C22 ⊆ Out C5xQ16804(C5xQ16):4C2^2320,540
(C5xQ16):5C22 = C16:D10φ: C22/C1C22 ⊆ Out C5xQ16804+(C5xQ16):5C2^2320,541
(C5xQ16):6C22 = C2xC5:SD32φ: C22/C2C2 ⊆ Out C5xQ16160(C5xQ16):6C2^2320,805
(C5xQ16):7C22 = D8:D10φ: C22/C2C2 ⊆ Out C5xQ16804+(C5xQ16):7C2^2320,820
(C5xQ16):8C22 = C2xD5xQ16φ: C22/C2C2 ⊆ Out C5xQ16160(C5xQ16):8C2^2320,1435
(C5xQ16):9C22 = C2xQ8.D10φ: C22/C2C2 ⊆ Out C5xQ16160(C5xQ16):9C2^2320,1437
(C5xQ16):10C22 = D5xC4oD8φ: C22/C2C2 ⊆ Out C5xQ16804(C5xQ16):10C2^2320,1439
(C5xQ16):11C22 = D8:15D10φ: C22/C2C2 ⊆ Out C5xQ16804+(C5xQ16):11C2^2320,1441
(C5xQ16):12C22 = C2xQ16:D5φ: C22/C2C2 ⊆ Out C5xQ16160(C5xQ16):12C2^2320,1436
(C5xQ16):13C22 = Q16:D10φ: C22/C2C2 ⊆ Out C5xQ16804(C5xQ16):13C2^2320,1440
(C5xQ16):14C22 = D8:11D10φ: C22/C2C2 ⊆ Out C5xQ16804(C5xQ16):14C2^2320,1442
(C5xQ16):15C22 = C10xSD32φ: C22/C2C2 ⊆ Out C5xQ16160(C5xQ16):15C2^2320,1007
(C5xQ16):16C22 = C5xC16:C22φ: C22/C2C2 ⊆ Out C5xQ16804(C5xQ16):16C2^2320,1010
(C5xQ16):17C22 = C10xC8.C22φ: C22/C2C2 ⊆ Out C5xQ16160(C5xQ16):17C2^2320,1576
(C5xQ16):18C22 = C5xD8:C22φ: C22/C2C2 ⊆ Out C5xQ16804(C5xQ16):18C2^2320,1577
(C5xQ16):19C22 = C5xD4oSD16φ: C22/C2C2 ⊆ Out C5xQ16804(C5xQ16):19C2^2320,1579
(C5xQ16):20C22 = C10xC4oD8φ: trivial image160(C5xQ16):20C2^2320,1574
(C5xQ16):21C22 = C5xD4oD8φ: trivial image804(C5xQ16):21C2^2320,1578

Non-split extensions G=N.Q with N=C5xQ16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5xQ16).1C22 = D20.44D4φ: C22/C1C22 ⊆ Out C5xQ161608-(C5xQ16).1C2^2320,1451
(C5xQ16).2C22 = SD32:D5φ: C22/C1C22 ⊆ Out C5xQ161604-(C5xQ16).2C2^2320,542
(C5xQ16).3C22 = SD32:3D5φ: C22/C1C22 ⊆ Out C5xQ161604(C5xQ16).3C2^2320,543
(C5xQ16).4C22 = D5xQ32φ: C22/C1C22 ⊆ Out C5xQ161604-(C5xQ16).4C2^2320,544
(C5xQ16).5C22 = Q32:D5φ: C22/C1C22 ⊆ Out C5xQ161604(C5xQ16).5C2^2320,545
(C5xQ16).6C22 = D80:5C2φ: C22/C1C22 ⊆ Out C5xQ161604+(C5xQ16).6C2^2320,546
(C5xQ16).7C22 = Q16.D10φ: C22/C2C2 ⊆ Out C5xQ161604(C5xQ16).7C2^2320,806
(C5xQ16).8C22 = C2xC5:Q32φ: C22/C2C2 ⊆ Out C5xQ16320(C5xQ16).8C2^2320,807
(C5xQ16).9C22 = C40.30C23φ: C22/C2C2 ⊆ Out C5xQ161604(C5xQ16).9C2^2320,821
(C5xQ16).10C22 = C40.31C23φ: C22/C2C2 ⊆ Out C5xQ161604-(C5xQ16).10C2^2320,822
(C5xQ16).11C22 = D20.30D4φ: C22/C2C2 ⊆ Out C5xQ161604(C5xQ16).11C2^2320,1438
(C5xQ16).12C22 = D20.47D4φ: C22/C2C2 ⊆ Out C5xQ161604-(C5xQ16).12C2^2320,1443
(C5xQ16).13C22 = C10xQ32φ: C22/C2C2 ⊆ Out C5xQ16320(C5xQ16).13C2^2320,1008
(C5xQ16).14C22 = C5xC4oD16φ: C22/C2C2 ⊆ Out C5xQ161602(C5xQ16).14C2^2320,1009
(C5xQ16).15C22 = C5xQ32:C2φ: C22/C2C2 ⊆ Out C5xQ161604(C5xQ16).15C2^2320,1011
(C5xQ16).16C22 = C5xQ8oD8φ: C22/C2C2 ⊆ Out C5xQ161604(C5xQ16).16C2^2320,1580

׿
x
:
Z
F
o
wr
Q
<