Extensions 1→N→G→Q→1 with N=C5×Q16 and Q=C22

Direct product G=N×Q with N=C5×Q16 and Q=C22
dρLabelID
Q16×C2×C10320Q16xC2xC10320,1573

Semidirect products G=N:Q with N=C5×Q16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5×Q16)⋊1C22 = D5×C8.C22φ: C22/C1C22 ⊆ Out C5×Q16808-(C5xQ16):1C2^2320,1448
(C5×Q16)⋊2C22 = D40⋊C22φ: C22/C1C22 ⊆ Out C5×Q16808+(C5xQ16):2C2^2320,1449
(C5×Q16)⋊3C22 = C40.C23φ: C22/C1C22 ⊆ Out C5×Q16808+(C5xQ16):3C2^2320,1450
(C5×Q16)⋊4C22 = D5×SD32φ: C22/C1C22 ⊆ Out C5×Q16804(C5xQ16):4C2^2320,540
(C5×Q16)⋊5C22 = C16⋊D10φ: C22/C1C22 ⊆ Out C5×Q16804+(C5xQ16):5C2^2320,541
(C5×Q16)⋊6C22 = C2×C5⋊SD32φ: C22/C2C2 ⊆ Out C5×Q16160(C5xQ16):6C2^2320,805
(C5×Q16)⋊7C22 = D8⋊D10φ: C22/C2C2 ⊆ Out C5×Q16804+(C5xQ16):7C2^2320,820
(C5×Q16)⋊8C22 = C2×D5×Q16φ: C22/C2C2 ⊆ Out C5×Q16160(C5xQ16):8C2^2320,1435
(C5×Q16)⋊9C22 = C2×Q8.D10φ: C22/C2C2 ⊆ Out C5×Q16160(C5xQ16):9C2^2320,1437
(C5×Q16)⋊10C22 = D5×C4○D8φ: C22/C2C2 ⊆ Out C5×Q16804(C5xQ16):10C2^2320,1439
(C5×Q16)⋊11C22 = D815D10φ: C22/C2C2 ⊆ Out C5×Q16804+(C5xQ16):11C2^2320,1441
(C5×Q16)⋊12C22 = C2×Q16⋊D5φ: C22/C2C2 ⊆ Out C5×Q16160(C5xQ16):12C2^2320,1436
(C5×Q16)⋊13C22 = Q16⋊D10φ: C22/C2C2 ⊆ Out C5×Q16804(C5xQ16):13C2^2320,1440
(C5×Q16)⋊14C22 = D811D10φ: C22/C2C2 ⊆ Out C5×Q16804(C5xQ16):14C2^2320,1442
(C5×Q16)⋊15C22 = C10×SD32φ: C22/C2C2 ⊆ Out C5×Q16160(C5xQ16):15C2^2320,1007
(C5×Q16)⋊16C22 = C5×C16⋊C22φ: C22/C2C2 ⊆ Out C5×Q16804(C5xQ16):16C2^2320,1010
(C5×Q16)⋊17C22 = C10×C8.C22φ: C22/C2C2 ⊆ Out C5×Q16160(C5xQ16):17C2^2320,1576
(C5×Q16)⋊18C22 = C5×D8⋊C22φ: C22/C2C2 ⊆ Out C5×Q16804(C5xQ16):18C2^2320,1577
(C5×Q16)⋊19C22 = C5×D4○SD16φ: C22/C2C2 ⊆ Out C5×Q16804(C5xQ16):19C2^2320,1579
(C5×Q16)⋊20C22 = C10×C4○D8φ: trivial image160(C5xQ16):20C2^2320,1574
(C5×Q16)⋊21C22 = C5×D4○D8φ: trivial image804(C5xQ16):21C2^2320,1578

Non-split extensions G=N.Q with N=C5×Q16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5×Q16).1C22 = D20.44D4φ: C22/C1C22 ⊆ Out C5×Q161608-(C5xQ16).1C2^2320,1451
(C5×Q16).2C22 = SD32⋊D5φ: C22/C1C22 ⊆ Out C5×Q161604-(C5xQ16).2C2^2320,542
(C5×Q16).3C22 = SD323D5φ: C22/C1C22 ⊆ Out C5×Q161604(C5xQ16).3C2^2320,543
(C5×Q16).4C22 = D5×Q32φ: C22/C1C22 ⊆ Out C5×Q161604-(C5xQ16).4C2^2320,544
(C5×Q16).5C22 = Q32⋊D5φ: C22/C1C22 ⊆ Out C5×Q161604(C5xQ16).5C2^2320,545
(C5×Q16).6C22 = D805C2φ: C22/C1C22 ⊆ Out C5×Q161604+(C5xQ16).6C2^2320,546
(C5×Q16).7C22 = Q16.D10φ: C22/C2C2 ⊆ Out C5×Q161604(C5xQ16).7C2^2320,806
(C5×Q16).8C22 = C2×C5⋊Q32φ: C22/C2C2 ⊆ Out C5×Q16320(C5xQ16).8C2^2320,807
(C5×Q16).9C22 = C40.30C23φ: C22/C2C2 ⊆ Out C5×Q161604(C5xQ16).9C2^2320,821
(C5×Q16).10C22 = C40.31C23φ: C22/C2C2 ⊆ Out C5×Q161604-(C5xQ16).10C2^2320,822
(C5×Q16).11C22 = D20.30D4φ: C22/C2C2 ⊆ Out C5×Q161604(C5xQ16).11C2^2320,1438
(C5×Q16).12C22 = D20.47D4φ: C22/C2C2 ⊆ Out C5×Q161604-(C5xQ16).12C2^2320,1443
(C5×Q16).13C22 = C10×Q32φ: C22/C2C2 ⊆ Out C5×Q16320(C5xQ16).13C2^2320,1008
(C5×Q16).14C22 = C5×C4○D16φ: C22/C2C2 ⊆ Out C5×Q161602(C5xQ16).14C2^2320,1009
(C5×Q16).15C22 = C5×Q32⋊C2φ: C22/C2C2 ⊆ Out C5×Q161604(C5xQ16).15C2^2320,1011
(C5×Q16).16C22 = C5×Q8○D8φ: C22/C2C2 ⊆ Out C5×Q161604(C5xQ16).16C2^2320,1580

׿
×
𝔽